Search results for " 65N30"

showing 2 items of 2 documents

Reliable numerical solution of a class of nonlinear elliptic problems generated by the Poisson-Boltzmann equation

2020

We consider a class of nonlinear elliptic problems associated with models in biophysics, which are described by the Poisson-Boltzmann equation (PBE). We prove mathematical correctness of the problem, study a suitable class of approximations, and deduce guaranteed and fully computable bounds of approximation errors. The latter goal is achieved by means of the approach suggested in [S. Repin, A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comp., 69:481-500, 2000] for convex variational problems. Moreover, we establish the error identity, which defines the error measure natural for the considered class of problems and show that it yields computa…

a priori error estimatesClass (set theory)Correctness010103 numerical & computational mathematics01 natural sciencesMeasure (mathematics)guaranteed and efficient a posteriori error boundsFOS: MathematicsApplied mathematicsPolygon meshMathematics - Numerical Analysis0101 mathematicserror indicators and adaptive mesh refinementMathematicsNumerical AnalysisApplied MathematicsRegular polygonNumerical Analysis (math.NA)convergence of finite element approximationsLipschitz continuity010101 applied mathematicsComputational MathematicsNonlinear systemexistence and uniqueness of solutionssemilinear partial differential equations65J15 49M29 65N15 65N30 65N50 35J20MathematikA priori and a posterioriPoisson-Boltzmann equationdifferentiaaliyhtälöt
researchProduct

Inverse problems and invisibility cloaking for FEM models and resistor networks

2013

In this paper we consider inverse problems for resistor networks and for models obtained via the finite element method (FEM) for the conductivity equation. These correspond to discrete versions of the inverse conductivity problem of Calderón. We characterize FEM models corresponding to a given triangulation of the domain that are equivalent to certain resistor networks, and apply the results to study nonuniqueness of the discrete inverse problem. It turns out that the degree of nonuniqueness for the discrete problem is larger than the one for the partial differential equation. We also study invisibility cloaking for FEM models, and show how an arbitrary body can be surrounded with a layer …

finite element methodBoundary (topology)CloakingInverse35R30 65N30 05C5001 natural sciencesDomain (mathematical analysis)inversio-ongelmatMathematics - Analysis of PDEsFOS: MathematicsMathematics - Numerical Analysis0101 mathematicsMathematicsPartial differential equationinverse problemsApplied Mathematicsta111010102 general mathematicsMathematical analysisTriangulation (social science)Numerical Analysis (math.NA)Inverse problem16. Peace & justiceFinite element methodComputer Science::Other010101 applied mathematicselementtimenetelmäModeling and Simulationresistor networksAnalysis of PDEs (math.AP)
researchProduct